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Numerical solutions of the Navier-Stokes equations for fully developed, sinusoidal 
and pulsatile flows in curved tubes are presented for conditions not accessible to 
analytical perturbation methods. Simulations of physiological pulsatile flows in the 
aortic arch reveal a wide variety of interesting flow phenomena, including: 
(1)  complex secondary flows with up to seven vortices in the half-tube; (2) cascaded 
vortex structures with vortices embedded within vortices ; (3) strong secondary flows 
with associated wall shear stress nearly as large as the axial component; (4) reversal 
of axial-flow direction at the inside wall; (5 )  peak axial wall shear stress at the inside 
wall; (6) highest r.m.8. wall shear stress at the inside wall; and (7) oscillatory 
impedance, which is accurately described by straight-tube theory. 

1. Introduction 
This numerical investigation of pulsatile flow in tightly curved tubes has been 

undertaken for two principal reasons: (i) pulsatility and curvature may play a role 
in the localization of atherosclerosis (‘hardening of the arteries ’) in certain regions 
of the human arterial system (Nerem & Cornhill 1980) ; and (ii) blood flow in the aortic 
arch, which is one of the most complex flows in the human circulation (Pedley 1980), 
is characterized by high pulsatility and curvature. 

The role of fluid mechanics in the localization of atherosclerosis is not well 
understood at present, but the tangential stress of flowing blood on the arterial wall 
(wall shear stress) is believed by many to be the most likely fluid-mechanical mediator 
of atherosclerosis. For more than fifteen years there has been considerable controversy 
as to whether ‘high shear stress’ (Fry 1968, 1969) or ‘1Qw shear stress’ (Caro, 
Fitz-Gerald & Schroter 1971) is more atherogenic. Recent reviews (Nerem 1981; 
Naumann & Schmid-Schonbein 1983) may be consulted for more information on the 
role of fluid mechanics in atherogenesis. In  light of this background we will place 
particular emphasis on both the spatial and temporal distribution of wall shear stress 
in reporting our results. 

Typical flow conditions in the aortic arch may be characterized as follows: 
(1) The aspect ratio h = R/a,  where R is the radius of curvature and a is the tube 

radius, is about 4. 
(2) The Womersley parameters a = a(w/v)!,  where w is the fundamental frequency 

and v is the kinematic viscosity, is usually between 10 and 20. 
(3) The flow waveform is pulse-like: systole (flow on) takes f to + of the cycle and 

peak Reynolds number Re = 2 Wa/v ,  where W is the average axial velocity, ranges 
from 3000 to 5000; diastole (flow of€) takes to 4 of the cycle and the mean flow is 
nearly zero. The Dean number Dn-= Re/& which is often used to characterize 
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Authors Nature Parameter range Method of solution 

Lyne (1970) Oscillatory - no A % l , a % l ,  Perturbation 

Zalosh & Nelson Oscillatory - no A % 1, arbitrary a Perturbation, finite 
mean flow R, 4 1 or R, % 1 

(1973) mean flow R, 4 1 Hankel 
transformation 

Bertelson (1974) Oscillatory - no Arbitrary A, a $- 1, Perturbation 

Smith (1975) Oscillatory with A % 1, a % 1 or a 4 1, Perturbation 
mean flow R, 4 1 

mean flow D %  1 or D 4  1 or D- 1, 
R, - 1 or R, - D or 
R, N d 

Simon, Chang t Chow Oscillatory with A B 1, a = 0.5 - 5 ,  Perturbation, finite 
(1977) mean flow small R, (k N 1) Hankel 

D n = 1  - 4 0  transformation 
Singh, Singha & Pulsatile with Valid only for a small Perturbation 
Agarawal (1978) mean flow entrance region 

TABLE 1. Summary of previous analytical works. D = Gas/pv2h, where G is the pressure 
gradient associated with the steady-flow component of the motion. 

Authors 

Chandran et al. 
( 1974) 

Blennerhassett 
(1976) 

Nature 

Oscillatory - no 
mean flow, elastic 
tube 

mean flow 
Oscillatory with 

Parameter range 

A = 10, a = 9.14, 
6.36, 5.09, peak 
Dn - 380 

A % 1, R ,  = 30 - 150 

Chandran et al. 
(1979) 

Lin t Tarbell 

Rabadi et al. 
( 1980) 

( 1980) 

Pulsatile with mean 
flow, elastic tube 

Oscillatory with 

Oscillatory with 
mean flow 

mean flow 

A = 5-40, a = 5.7-14.2, 
R, - 0(10), 
Dn = 98 - 489 

A = 20, a = 4-46, 
R, N 0(1), k < 1 

A = 100, a = 1-15, 
R,-O(O) ,  k c 1 . 5  

Method of solution 

numerical solution ; 
equations linearized 

numerical solution; 
mean and unsteady 
part solved 
separately 

numerical solution ; 
mean and unsteady 
part solved 
separately 

AD1 method 

Perturbation and 

Perturbation and 

Perturbation and 

AD1 method 

TABLE 2. Summary of previous numerical works 

curved-tube flows, takes on (time) mean values of 300-500 and peak values of 
1500-2500. 

(4) The secondary Reynolds number R, = WAC/fdVA, where WAC is the amplitude 
of the oscillatory part of the average axial velocity, is typically 4000 (Pedley 1980). 

(5) The ratio of the amplitude to the mean of the pressure-gradient waveform k 
is about 100 (Pedley 1980). 
Because of these extreme conditions, aortic-arch flows have not been successfully 
analysed by either analytical or numerical methods. 

Tables 1 and 2 summarize the previous theoretical work on oscillatory flow in 
curved tubes. For EL more general review of flow in curved tubes consult Berger, Talbot 
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& Yao (1983). Many of the analytical works were developed for purely oscillatory 
(zero-mean) flows, and all of them suffer from either large A or small B, assumptions 
which render them inapplicable to aortic-arch flow. The analysis by Smith (1975) 
appears to be the most extensive perturbation work. However, aortic-arch-flow 
conditions are not within the parameter ranges where perturbation solutions can be 
obtained (see the comparison given at the end of the paper). Among the numerical 
works only Lin & Tarbell (1980) and Rabadi, Simon & Chow (1980) solved the 
complete governing equations. However, both works were restricted to small 
pressure-gradient variations (k < 1.5) and low secondary Reynolds numbers (R, < 1). 

In the present work we have obtained numerical results for flow conditions 
characteristic of the aortic arch ( A  as low as 3.8, a up to 21, R, - O(lO00), k - O( 100). 
Solutions for such extreme conditions have not previously been achieved by either 
perturbation or numerical methods. 

In the next section the mathematical problem and numerical solution technique 
are described, and this is followed by $3 in which the results of several numerical 
simulations are presented and discussed. 

2. Mathematical description 
2.1. Governing equations 

The governing differential equations for fully developed, time-dependent flow of a 
Newtonian fluid in a rigid curved tube are given below (Rabadi et al. 1980) while the 
geometry is shown in figure 1. 

Axial-momentum equation 

Vorticity-transport equation 

Stream-function equation 
1 

where 

In the above, W is the axial (0) velocity; aP/a0 is the axial pressure gradient 
(independent of r ,  # and 0 in fully developed flow) ; N is the vorticity associated with 
secondary flow in the ( r ,  #)-plane; and Y is the stream function which characterizes 
the secondary flow and satisfies the continuity equation (not shown). These variables 
are all dimensionless as a result of scaling length with the tube radius a,  velocity with 
vla,  pressure with pv2/a2, and time with w-l. Dimensionless parameters appearing 
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I Y 

FIQURE 1. Toroidal coordinate system 

directly in the equations are the aspect ratio A E Rla,  and the unsteadiness 
parameter a = a(w/v)i. Because the flow is assumed to be fully developed, all 
derivatives with respect to  the axial coordinate 8 have been set to zero, except for 
the axial pressure gradient aPla8 which drives the flow. 

The boundary conditions on W, N and Yare derived from the no-slip condition 
a t  the tube wall ( r  = 1) and symmetry conditions about the tube centreline ( W  is 
symmetric while N and Yare anti-symmetric). 

Boundary conditions 

1 iw 
W =  Y = O ;  N = - -  ( r = l ,  -$<+<in), 

s ar2 ( 4 4  

(4b)  -- - Y = N = O  (+=+in, O < r < l ) .  aw 
a+ 

Before solving (1)-(3) subject to  boundary conditions (4), the radial coordinate r 
is transformed ( z  is the new coordinate) as follows: 

, O < k < l .  (5 )  r = z ek(1-z) 

When the transformed coordinate z is discretized uniformly (Az constant), the radial 
coordinate r is effectively spaced non-uniformly with close packing of nodcs near the 
tube wall where radial gradients are steep (thin boundary layers present), and wider 
spacing near the tube centre where gradients are less severe. The transformed 
equations follow : 

Axial-momentum equation 

aw aw aw a2w 1 a2w lap 
a2 -+ A w + B - + (CE, - E,) -- q - -- - = -- -. 

at 84 aZ i3z2 r2 a+, s 80’ (6) 

Vorticity-transport equation 

aN a2N 1 a2N aN aN 
at a+ aZ az2 r2 a+2 (7 1 01, -+ A ,  N + B - + (CE, - E,) -- - = D ,  ; 

Stream-function equation 
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where s = h + r  sin$, A = 

El = - z 
r -krz '  

E, = - q ( i . - - k ) .  z-rE, 

The accompanying boundary conditions are 

2.2. Solution procedure 

A finite-difference numerical solution was implemented on a uniformly spaced 
(non-staggered) 21 x 21 polar grid system. This same grid was also employed in 
several previous numerical works concerned with curved-tube flows (Austin & Seader 
1973; Patankar, Pratap & Spalding 1974; Rabadi et al. 1980). The parameter k of 
the radial grid transformation was usually set between 0.5 and 0.7. Time increments 
were uniform for all simulations. Eighty-two time steps per period were employed 
for sinusoidal-flow simulations and 164 steps per period for pulsatile-flow simulations. 

Finite-difference approximations to the partial derivatives in (6)-( 8) were taken 
as standard second-order central differences for all spatial derivatives and first-order 
forward differences for time derivatives as required by the alternating-direction- 
implicit (ADI) algorithm. Wall vorticities (9a )  were computed to first-order 
accuracy, and axial-wall-shear rates were calculated from a cubic-spline fit of the 
axial-velocity profiles. The secondary wall-shear rate was given directly by the 
boundary vorticity. 

The time-integration scheme employed to advance the W, N and Y fields one time 
step is outlined in flow-chart fashion in figure 2. Briefly, the pressure gradient is 
specified and the parabolic axial-momentum equation is advanced a full time step 
by the AD1 method without iteration. During this step, the Y-dependent coefficients 
(A, B, C) are computed from the most-current Y field. Next, the parabolic vorticity- 
transport equation is updated by the AD1 method without iteration. The new 
coefficients ( A N ,  D,) as well as the boundary vorticity (9a) are computed from the 
current Y-field and the newly computed W-field. With a new vorticity field available, 
the elliptic stream-function equation is advanced by the AD1 method, which in this 
case requires iteration. A line-by-line over-relaxation method is employed for this 
purpose, and iteration is halted when the relative change between successive fields 
is less than at all nodes. Having a new Y-field in hand, it is now possible to update 
the coefficients A, A,, B and C as well as the boundary vorticity. All coefficients (A, 
A,, B, C,  D,) are evaluated at the central grid point. 
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Solve vorticity-transport equation 

by AD1 method 
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Solve stream-function equation 
by AD1 over-relaxation 

Calculate boundary vorticities Boundary-vorticity 
under-relaxation 

Yks 

axial-velocity field (lo-') 

Update time * 
FIQIJRE 2. Flow chart for numerical algorithm. 

Experience has shown that it is important, for purposes of maintaining numerical 
stability, to obtain convergence of both the vorticity-transport and stream-function 
equations before proceeding with another iteration of the axial-momentum equation. 
The stability of this iteration loop is maintained through under-relaxation (typical 
relaxation factor is 0.5) on the boundary-vorticity values. Once this stream function- 
vorticity loop has converged (less than relative change) the outer iteration loop 
for the axial velocity can be continued until convergence (again, less than 
relative change) is achieved. This sequence of three nested iteration loops is then 
repeated a t  each successive time step. Integration is continued over several periods 
of pulsatile flow until an oscillatory steady state is obtained. 
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Initial conditions for the algorithm in the case of pulsatile flow were provided in 
a very simple manner. The flow was assumed to be stationary ( W  = N = Y = 0) 
throughout the tube cross-section at the end of diastole just prior to the rapid systolic 
acceleration. This initial condition allowed an oscillatory steady state to be approached 
within 4-10 periods for all cases to be presented. 

Although grid-refinement studies of numerical convergence were not pursued 
because of excessive computation time, the numerical method was extensively 
checked against previous numerical work and perturbation solutions. A comparison 
with the axial-velocity profiles of steady flow with Dn = 401.3 and A = 5.0 simulated 
by Austin & Seader (1973) showed a maximum relative discrepancy of less than 1 %. 
Two cases of purely oscillatory flow, one with a = 21.92, h = 9.256, R, = 1.09, which 
is an experimental condition of Bertelson (1974), and another with a = 17, h = 20, 
R, = 500, showed Lyne's four-vortex secondary flow and steady secondary streaming 
phenomena (Lyne 1970). The time-averaged secondary velocit,ies, when compared 
with perturbation solutions, showed a maximum relative difference of less than 4 % , 
which may well be attributed to the approximate nature of the perturbation 
solutions. 

3. Results and discussion 
We have simulated two sinusoidal flows with non-zero mean and two physiological 

pulsatile flows characteristic of the aortic arch. All of the simulations are based on 
experiments conducted in physical models by others in which extensive axial and 
limited secondary-velocity data were measured by either laser-Doppler or hot-film 
anemometry. We have attempted to compare quantitatively our simulations with 
the experiments where feasible, particularly the axial-velocity profiles. The secondary- 
flow structure revealed by the simulations is much more complex than suggested by 
the experimental results. 

3.1. Sinusoidal $ow with rwn-zero mean 

Talbot & Gong (1983) conducted two experiments (hereinafter referred to as Exp. I 
and Exp. 11) in curved tubes by generating sinusoidal flows superimposed on a mean 
flow. Four observation sections were set up along the axial path of the developing 
flow, and a laser-Doppler anemometer was employed to measure axial and radial 
velocities. Since our simulations are strictly applicable to fully developed flows, only 
the experimental results for the last sections (0 = 135" in Exp. I and 0 = 110' in 
Exp. 11) will be used for comparison. 

A major problem encountered in simulating these experiments is the unavailability 
of the pressure-gradient waveform, which is the forcing function for the governing 
differential equations. This function is seldom reported in the experimental literature 
- usually only the flow waveforms are available. However, the experiments of Kang 
& Tarbell (1983) led to a simple theory relating pressure gradient and flow in 
curved-tube sinusoidal flows with a mean component. The theory indicates that the 
impedance (pressure drop/flow rate) of the mean-flow and the oscillatory-flow 
components are additive; the oscillatory part is the same as that of fully developed 
flow in a rigid straight tube (Womersley 1955); and the mean part is described by 
a quasi-steady-state analysis based on a correlation for the steady-flow impedance 
of curved tubes due to Tarbell & Samuels (1973). The details are available in Kang 
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0 1 2 3 4 5 6  

Time (rad) 

0 I 2 3 4 5 6 

Time (rad) 

FIQURE 3. Flow waveforms for Exp. I (a) and Exp. I1 ( b ) .  -, experiment; ---, simulation. 

& Tarbell (1983). When this theory was applied to the flow waveforms reported by 
Talbot & Gong (1983), the pressure gradients below were obtained: 

- 69737[1+ 1.98 cos (at+ 1.32)]; 
ap 
ae EXP. I -- 

Exp. I1 = 94414[1+6.54 cos (ot+ 1.32)]. ae 
These waveforms have been employed as inputs for simulation of Exp. I and 
Exp. 11. The experimental and simulated-flow waveforms are shown in figure 3. 
Values of relevant parameters are summarized in table 3. 

As pointed out by Talbot & Gong (1983), Exp. I is essentially in a quasi-steady 
state. The oscillatory part of the pressure gradient merely modulates the basic steady 
flow. This is also observed in the numerical results. Figure 4 shows axial-velocity 
contours (lines of constant axial velocity) and secondary-flow-velocity vectors (length 
proportional to velocity) at two times during a cycle for Exp. I. Axial velocities are 
always highest near the outer wall, and the secondary flow always consists of a single 
vortex (in the half tube) with flow directed outward along the centreline. These are 
the qualitative features of steady flow in a curved tube first reported by Dean (1927). 
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Lh Peak Dn h a Rs k 
Exp. I 120 163 20 7 6.36 1.98 
Exp. I1 372 825 7 12.5 231.5 6.54 

TABLE 3. Flow and pressure-gradient characteristics of Exp. I and Exp. I1 

Much more complex flow was observed in Exp. 11. Although the numerical and 
experimental results show essentially the same phenomena, the former, giving both 
components of the secondary velocity and more nodes in the semicircle, perhaps shows 
the qualitative features of the secondary flow more clearly. The axial velocity 
contours and secondary flows are shown in figures 5 ( a ) - ( f )  and 6(a)-(f) which 
correspond to figures 7 (a)-( f )  (0 = 110’) in Talbot & Gong (1983). 

The numerical axial-velocity contours are both qualitatively and quantitatively 
comparable to the experimental contours. The maximum axial velocity still occurs 
on the outside wall, but the profde at peak forward flow (figure 5a)  is much flatter 
than in Exp. I (cf. figure 4a).  In  Exp. I1 there is significant axial-flow reversal along 
the inside wall over a substantial portion of the cycle (figure 5c, d) even though the 
mean flow shows no reversal (figure 3) .  This flow reversal has no counterpart in fully 
developed steady flow, but may arise in oscillatory flows at  high a even in straight 
tubes (Womersley 1955). 

The secondary-flow phenomena of Exp. I1 are displayed in figure 6 both quanti- 
tatively (velocity vectors on left) and qualitatively (streamline sketches on right). The 
streamline sketches simply depict the major vortex structures without attempting 
to convey the tortuosity of individual streamlines. Weak vortices that, in a few 
instances, seem to be required for topological consistency but are difficult to resolve 
with our finite-difference grid have not been included. In  figure 6(a) ,  the secondary 
flow shows a single vortex (Dean vortex) with its centre near the inside wall and many 
complex streamlines. High velocities appear along the wall, particularly near the 
inside of the tube. Talbot & Gong (1983) described this high-velocity flow near the 
inside wall as a ‘ jet-like outward motion’. Subsequent deceleration of the flow results 
in the formation of an embedded vortex (within the Dean vortex) near the inner wall 
(figure 6b) .  This corresponds to what Talbot & Gong (1983) described as ‘imbedded 
secondary flow helical motion’. The Dean vortex is confined to the upper part of the 
half-tube and tends to drive a weak clockwise inner vortex. The experimental data 
also showed evidence of this weak vortex since small inward velocities between the 
outer wall and the centre of the tube were observed. In  figures 6(c)-(e), the embedded 
vortex continues to exist but the weak clockwise vortex of figure 6 (b) has disappeared. 
Figure 6 (f ) again shows thisembeddedvortex, but a companion vortex of considerable 
momentum is now also observed. These two strong vortices probably underlie the 
‘four distinct regions of secondary motion, two outward and two inward’ which were 
described by Talbot & Gong (1983) for this instant in the flow cycle. The Dean vortex 
in this case has tortuous streamlines near the outside wall (cf. figure 6a)  where there 
is a hint of flow separation accompanied by a weak clockwise vortex. It appears that 
the fluid near the inside wall, which has been trapped inside the strong embedded 
vortex throughout most of the cycle ( S b - f ) ,  has finally gained enough momentum 
to move to the outer wall along the centreline, and the two strong vortices observed 
in (6f) merge to form part of the single Dean vortex (6a) .  

The maximum secondary wall shear stress over the cycle is 3.68 dynes/cme which 
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1 .o 

0.6 

0.2 

0.2 0.6 1.0 1.4 1.8 

FIQURE 6. Secondary velocity vectors (left) and streamline sketches (right) for Exp. 11: (a) 
t = in, (a) in, (c) in, (d) in, (e) v n ,  (f) Vn. One tube diameter length is equal to 36.8 cm/s. 
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occurs at the top of tube (q5 = 0") at time in. The axial wall shear stress reaches its 
maximum value of 6.14 dynes/cm2 at time 0.153 at the outside of the tube (q5 = 90"). 
These values should be compared with a peak Poiseuille-flow wall shear stress of 
1.34 dynes/cm2 and a peak Womersley-flow wall shear stress of 4.18 dynes/cm2. 

3.2. Physiological pulsatile flows 
In  this section we discuss simulations of two physiological pulsatile flows that are 
related to recent experiments in which velocity fields were measured. The experiment 
of Chandran & Yearwood (1981) (hereinafter referred to as Exp. 111) was performed 
in an acrylic curved tube of constant radius of curvature and circular cross-section 
with an aspect ratio of h = 10. The experiment of Yearwood & Chandran (1984) 
(hereinafter referred to as Exp. IV) was conducted in a rigid model produced from 
a silicone-rubber casting of a human aortic arch, excluding the branches at the 
top of the arch. The radius of the aortic-arch model tapered from 1.63 cm in the 
ascending aorta to 1.15 cm in the descending aorta. Since our simulation dealt only 
with fully developed flow, an average radius of 1.35 cm and an average aspect ratio 
of A = 3.8 were used. Thus, we roughly approximated the geometry of Exp. IV. 

I n  both experiments a three-component hot-film probe was employed to  measure 
axial and secondary velocities at five axial locations starting at the entrance. The 
last observation section, where comparisons with simulations will be made, was a t  
97' from the entrance for Exp. I11 and 186.2" for Exp. IV. The simple theory 
described in 83.1 was used to provide an estimate of the unknown pressure gradient 
from the flow waveforms reported for Exps. I11 and IV, and some adjustments were 
necessary to obtain the desired flow waveforms. The pressure-gradient waveforms are 
shown in figure 7 and the flow waveforms in figure 8. Values of important parameters 
are summarized in table 4. 

Axial-flow phenomena. Figures 9 and 10 show both simulated and measured axial- 
velocity profiles a t  the central line ($ = -$ to  +@) and the top-centreline ($ = 0) 
for Exp. 111. The agreement between simulation and experiment is quite good, even 
though the flow waveforms do not match exactly. The profiles show that velocities 
near the inner wall go through a larger cyclic variation than those near the outer wall, 
and significant reverse flows are observed near the inner wall during diastole. The 
simulation results show that the maximum axial velocity occurs near the outer wall 
at time 4.90, while the maximum axial wall shear stress appears a t  the inside wall 
a t  time 3.76. The top-centre profiles are relatively flat and do not show reversal. 

The simulated distribution of the axial wall shear stress around the periphery is 
displayed in figure 11,  while the peak, mean and r.m.s. values at three locations are 
summarized in table 5. The peak wall shear stresses at the inner and outer wall are 
very close, with the inner wall having a slightly higher value of 22.7 dynes/cm2. The 
approximate peak wall shear stresses reported by Chandran & Yearwood (1981) are 
11.5 dynes/cm2 for the outer wall and 10 dynes/cme for the inner wall. The 
discrepancies between simulation and experiment may in part reflect the errors in- 
volved in calculating wall shear stresses from extrapolated velocity-profile measure- 
ments in the near-wall region. As pointed out by Brech & Bellhouse (1973), this 
method may underestimate the real values by 50%. For comparison, the peak 
Poiseuille-flow wall-shear-stress value is 5.1 dynes/cm2 while the peak forward- 
Womersley-flow wall shear stress is 21.0 dynes/cm2. Womersley flow for this experi- 
mental condition also shows reversal of wall-shear-stress direction with a peak 
negative value of - 10.8 dynes/cm2. The wall shear stress reverses direction at the 
inside wall, but not the outside wall, and the cyclic variation is greater at the inside 

7 F L M  161 
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Time (rad) 

(6)  

0 1.57 3.14 4.71 6.28 

Time (rad) 

FIGURE 7. Pressure gradient waveforms: (a) Exp. 111; ( b )  Exp. IV. 

wall. This is reflected in the higher r.m.8. values at  the inside wall (table 5). However, 
the (time) mean value is considerably higher at the outside wall, as would be expected 
in steady flow. 

The axial-flow phenomena of Exp. IV are similar to those of Exp. 111. Figures 12-14 
show the simulated central-line axial-velocity profiles, top-centre axial-velocity 
profiles, and the axial-wall-shear-stress distributions, respectively. Peak, mean and 
r.m.8. values of axial wall shear stress at three locations are also presented in table 5. 
The quantitative comparison between simulation and experiment is not as 
favourable in this case as it  was for Exp. I11 ; however, the geometry in Exp. IV can 
only be roughly approximated as a uniform curved tube. Nonetheless, the comparisons 
are fairly good. Near the peak of systole the fluid near the inner wall displays a 
significantly higher velocity than that, near the outer wall. The experimental profile 
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0 1 2 3 4 5 6  
Time (rad) 

FIGURE 8. Flow waveforms: (a) Exp. 111; 

0 1 2 3 4 5 6  
Time (rad) 

( b )  Exp. IV. -, experiment; ---, simulation. 

Dn Peak D n  h d Rs k 
Exp. 111 380 987 10 20.76 215.7 52.1 
Exp. IV 594 1740 3.8 18.58 950.8 48.0 

TABLE 4. Flow and pressure-gradient characteristics of Exp. I11 and Exp. IV 

cn -I 

-==h 
W 

-301 

-40 . . . . . . . . .  . . . . . . . . .  . . . , . . . . .  . . . . . . . . . I  

- 1.0 -0.5 0 0.5 1 .o 
Inside Centre Outside 

FIGURE 9. Central-line axial-velocity profiles for Exp. 111. -, experiment; ---, simulation: t = 4.90 
or J = 6 in Chandran & Yearwood (1981) for upper two profiles; t = 0.31 or J = 10 in Chandran 
& Yearwood (1981) for lower two profiles. 

7-2 
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0 0.2 0.4 0.6 0.8 1 .o 
TOP Centre 

FIQURE 10. Top-centreline axial-velocity profiles for Exp. 111. -, experiment; ---, simulation : 
t = 4.90 or J = 6 in Chandran & Yearwood (1981) for upper two profiles; t = 0.31 or J = 10 in 
Chandran & Yearwood (1981) for lower two profiles. 

301 

- 

- 1.57 0 I .57 
Inside TOP Outside 

FIQURE 11. Simulated axial wall shear stress distributions for Exp. 111. 
-, t = 0.31; ---, 2.30; ----, 3.75; ---, 4.90. 

Inside TOP Outside 

peak mean r.m.s. peak mean r.m.s. peak mean r.m.s. 

Exp. I11 22.69 1.14 11.84 22.73 4.99 10.79 22.05 6.79 10.67 
Exp. IV 38.79 0.71 15.72 32.40 7.10 12.67 27.50 9.20 11.99 

TABLE 5. Axial-wall-shear-stress characteristics. All values in dynes/cm2. 
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- 5 0 1  

0 0.2 0.4. 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
Inside Centre Outside 

FIGURE 12. Central-line axial-velocity profiles for Exp. IV. ---, t = 2.15; 
--- , t = 3.52; ----, t = 3.83; -- --, t = 6.28. 
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FIGURE 13. Top-centreline axial-velocity profiles for Exp. IV. 
---, t = 2.15; ---, 3.52; ----, 3.83; ----, 6.28. 

also shows this feature. As in Exp. 111, velocities near the inner wall go through larger 
cyclic variations than those near the outer wall, and significant reverse flows are 
observed near the inner wall. This was also observed experimentally. The top-centre 
profiles are relatively flat, as in Exp. 111, but there is now evidence of flow reversal 
during diastole. 

Again, the axial wall shear stress displays the largest r.m.8. values and lowest mean 
values, as well as significant negative values at the inner wall - not the outer wall. 
However, unlike the situation in Exp. 111, the maximum axial wall shear stress is 
significantly higher at the inside wall (38.8 dynes/cm2) than it is at  the outside wall 
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FIGURE 14. Simulated axial-wall-sheer-stress distributions for Exp. IV. 
---, t = 2.15; ---, 3.52; ----, 3.83; ----, 6.28. 

(26.0 dynes/cm2). The reported data by Yearwood & Chandran (1984) show a similar 
trend, but the values are lower, with 18.5dynes/cm2 at the inner wall and 
14.0 dynes/cm2 at  the outer wall. For comparison, the peak Poiseuille-flow wall shear 
stress value is 7.0 dynes/cm2 while, for Womersley flow, the peak forward-flow wall 
shear stress is 25.0 dynes/cm2 and the peak negative-flow value is -6.4 dynes/cm2. 

The impedance (pressure drop/flow rate) of the first seven harmonics of the 
simulated flows is displayed in figure 15. The impedance modulus has been normalized 
in such a way that a value of 1 is obtained for Poiseuille flow. It is striking to note 
how well the impedance of pulsatile flow in tightly curved tubes is described by 
straight-tube theory (Womersley 1955). This is exactly what was observed by Kang 
& Tarbell (1983) in flow-pressure-drop experiments in a variety of curved-tube models 
for sinusoidal flows with non-zero mean. Apparently, in the wall region (Stokes layer) 
at high a, the axial component of the inertia (a V/at + V* V V in the Navier-Stokes 
equations) is dominated by the unsteady term (a V/at).  The unsteady inertia is linear, 
geometry independent and, of course, accounted for in straight-tube theory. In fact, 
high-a-perturbation solutions for oscillatory flow in curved tubes by Lyne (1970) 
(pure sinusoidal flow with zero mean flow) and Blennerhassett (1976) (sinusoidal flow 
with a non-zero mean when the Stokes layer is the thinnest boundary layer) produce 
the straight-tube result at the leading order. 

The impedance of the mean flow was determined to be 2.57 in Exp. 111 and 3.37 
in Exp. IV. For steady flow at the mean Dean number of the pulsatile flow 
simulations, the impedances may be estimated by the correlation of Tarbell & 
Samuels (1973). This correlation accurately predicts both experimental (Kang & 
Tarbell 1983) and numerical (Tarbell & Samuels 1973) results in ranges of aspect ratio 
and Dean number appropriate to the present study. The resulting steady-flow 
impedances are 2.65 for Exp. I11 and 4.10 for Exp. IV. In both cases the mean 
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FIGURE 15. Impedance modulus and phase angle for Exp. I11 and IV 
A, Exp. 111; 0, Exp. IV; -, straight-tube theory. 

impedance of pulsatile flow is lower than the impedance of steady flow at the mean 
Dean number. This finding is in marked contrast with the experimental results of 
Kang & Tarbell (1983). They found that mean impedance in oscillatory flow was 
always higher than steady-flow impedance a t  the mean Dean number. However, 
Kang & Tarbell (1983) considered only sinusoidal flows with unsteadiness-parameter 
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values in the range a = 4-17, whereas Exps. I11 and I V  simulated in this work 
involved pulsatile flows with unsteadiness parameters in the range a = 18-55 (when 
seven harmonics are considered). It should be noted that for the simulations of Exps. 
I and 11, which involve flow conditions similar to the experiments of Kang & Tarbell 
(1983), the mean-flow impedance is always greater than the steady-flow impedance 
a t  the mean Dean number - by a factor of 1.01 for Exp. I and 1.09 for Exp. 11. Thus, 
differences in flow waveform and/or unsteadiness-parameter range seem to be 
important in explaining the difference in mean-flow behaviour, but the mechanism(s) 
operative are not clear a t  the present time. 

Secondary-$ow phenomena. The discussion of qualitative secondary-flow pheno- 
mena is confined to Exp. IV, which simulates physiological-pulsatile-flow conditions 
in the human aortic arch. For Exp. 111 the qualitative features are very similar to 
those of Exp. 11. Secondary-flow velocity vectors and streamlines at four instants 
during the cardiac cycle are displayed in figure 16. The secondary-flow pattern a t  end 
diastole is shown in figure 16a. There appear to  be three vortices, one clockwise and 
two counterclockwise, embedded within a large counterclockwise vortex (Dean 
vortex). This pattern of embedded vortices is qualitatively similar to  patterns ob- 
served in Exp. I1 (figure 6c-e), although more vortices are embedded here. The be- 
haviour a t  peak systole (figure 16b) is qualitatively different. Here the Dean vortex is 
confined to the wall region and the core flow is composed of three counter-rotating 
vortices - two clockwise and one counterclockwise. This pattern is similar to that ori- 
ginally predicted by Lyne (1970) for pure sinusoidal flow at high a, but the core flow 
is more complex here. By late systole (figure 16c) the Dean vortex appears to  have 
pushed its way into the core, engulfing vortices in the process. This continues until 
at end systole (figure 16d), the most complex structure arises. Here we see what appears 
to be a single Dean vortex containing three counter-rotating vortices, but the vortex 
nearest the inside wall contains within i t  a sub-system of three counter-rotating 
vortices. Thus at this instant we see vortex within vortex within vortex - a structure 
reminiscent of turbulence of a rather coarse grain, yet there is no random time variation 
apparent since the instantaneous velocity values are repeated each period to within 
a relative variation of lo-*. 

The secondary-flow wall-shear-stress distributions at four instants during the 
cardiac cycle are reported in figure 17 (Exp. 111) and figure 18 (Exp. IV). I n  both 
cases the wall shear stress peaks near the top of the tube, towards the inside wall, 
and there is no evidence of reversal of wall-shear-stress direction over the cycle. The 
secondary-flow wall shear stresses are quite large, with peak values reaching 37 yo of 
peak axial-wall-shear-stress values in Exp. I11 and 72 yo in Exp. IV. 

Comparison with Smith (1975). Smith (1975), employing perturbation methods, 
examined the character of various fluid motions that might occur in fully developed 
sinusoidal flow in a rigid curved tube. He identified ten separate flow regimes 
depending on the values of three parameters: the alternative Dean number D,  the 
secondary Reynolds number R, and the frequency parameter p = (2/a)i. The 
alternative Dean number is defined as D = Ga3/Aipv2 where G is the pressure gradient 
associated with the mean-flow component of the motion. 

Although Smith’s analysis invokes the assumption of large A, i t  is still of interest 
to  see how the physiological pulsatile flows might be classified. We have determined 
from our simulations that : 

D = 3899, R, = 215, p = 0.068, for Exp. 111; 

and D = 10823, R, = 951, p = 0.070, for Exp. IV. 
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FIGURE 16. Secondary-velocity vectors (left) and streamline sketches (right) for Exp. IV: (a) 

t = 2.15, (b )  3.83, (c) 5.06, (d) 6.28, one tube diameter length is equal to 160 cm/s. 

Both cases most closely correspond to Smith's case X ( D  % 1, f l -  D J ,  R, - B). 
Talbot & Gong (1983) pointed out that Exp. I1 also corresponds to case X whereas 
Exp. I is closer to case V. However, for case X Smith (1975) obtains a solution form 
only with the further restriction 1 @ 1 or 1 + 1, where 1 = p a .  For Exps. I11 and IV, 
1 = 1.07 and 1 .68, respectively. Thus we see that the physiological pulsatile flows are 
outside the reach of Smith's perturbation solutions and full numerical solutions, such 
as ours, are in order. 

It may be of interest to consider to what extent the qualitative features of Smith's 
Case X are manifested in the simulations of Exp. IV. For Case X, both the axial and 
secondary flow are pulsatile, and for 14 1 the secondary flow is definitely outward 
but may be reversed for 1 $ I .  The results of Exp. I V  simulations certainly show both 
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FIGURE 17. Secondary-wall-shear-stress distributions for Exp. 111. 
-, t = 0.31; ---, 2.30; ---, 3.75; ---, 4.90. 
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FIQURE 18. Secondary-shear-stress distributions for Exp. IV. 
---, t = 2.15; ---, 3.52; ----, 3.83; ----, 6.28. 
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axial and secondary flows which are pulsatile (figures 12, 13 and 16), but the 
secondary flow is more complex than suggested by Smith’s Case X. The simulations 
show an outward motion along the centreline during certain intervals of the flow cycle 
(figure 16a, d ) ,  but during other intervals (figure 16b, c) the centreline secondary flow 
changes direction at several locations, reflecting the multiplicity of core vortices. The 
multiple-core vortices and embedded vortices which distinguish Exp. IV have not 
been discussed by Smith for Case X. It must, of course, be remembered that Smith’s 
analysis is for a one-harmonic flow, while physiological pulsatile flows are inherently 
multi-harmonic. Because of the nonlinear nature of curved-tube-flow problems, a 
superposition principle does not generally apply, and harmonic interactions may lead 
to new flow structures. 

4. Concluding remarks 
The numerical solutions for physiological pulsatile flows characteristic of the aortic 

arch presented in this paper reveal a wide variety of interesting flow phenomena 
including: (1)  complex secondary flows with up to seven vortices in a half-tube; (2) 
cascaded vortex structures with vortices embedded within vortices; (3) strong 
secondary flows with associated wall shear stress nearly as large as the axial 
component; (4) reversal of axial-flow direction at  the inside wall ; ( 5 )  peak axial wall 
shear stress appearing at the inside wall, whereas it appears on the outside wall in 
steady flow; (6) highest r.m.8. wall shear stress at the inside wall; and (7) oscillatory 
impedance which is accurately described by straight-tube theory. 

The present work is also perhaps relevant to our understanding of the role of fluid 
mechanics in atherogenesis. Although the aortic arch is not one of the most prominent 
sites in the arterial system for severe atherosclerosis (Nerem & Cornhill 1980), it is 
affected by the disease and most severely on the inner curvature (Texon 1980; 
Rodkiewicz 1975). The inner curvature would normally be thought a low-wall- 
shear-stress region on the basis of fully-developed-steady-flow considerations, and 
indeed we have seen that the (time) mean wall shear stress is lowest in this region. 
However, the instantaneous wall shear stress and r.m.8. wall shear stress may be 
highest on the inner curvature. Thus the inner curvature is a site of both low and 
high wall shear stress relative to the outer curvature. In order to decide whether the 
mean shear stress or the peak or r.m.8. shear stress is most likely to be influential 
in the distribution of atheroma, it is necessary to have some appreciation of timescales 
associated with atherogenic mechanisms which are influenced by wall shear stress. 
If such mechanisms are slow (time constant much greater than - 1  s), such as 
diffusive mass transport within the artery wall, then the peak and r.m.8. components 
will be greatly attenuated, and only the mean component will be influential. On the 
other hand, if such mechanisms are fast (time constant less than - 1  s) ,  the peak 
and/or r.m.8. components may come into play. The peak and/or r.m.s. components 
may also be important if a threshold mechanism, which ‘turns on’ only when wall 
shear stress exceeds a certain minimum value, is operative. Unfortunately, the 
shear-dependent mechanisms are not well understood at present, and the question 
remains open. 

This work was supported in part by NSF Grant No. MEA 80-10878 and NIH Grant 
No. HL26824. 
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